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SUMMARY 

Three identical   four-place,  low-wing single-engine  airplane specimens  with nom- 
i n a l  masses of  1043 kg w e r e  c r a sh - t e s t ed   a t   t he  Langley Impact Dynamics Research 
Facil i ty  under  controlled  free-fl ight  conditions.  The tests were conducted a t   t h e  
same nominal impact velocity  of 25 m/sec a long   the   f l igh t   pa th .  Two airplane speci- 
mens were crashed on a concrete  surface (a t  loo  and -3OO pi tch  angles) ,   and one w a s  
crashed  on s o i l  ( a t  a -3OO pi tch  angle) .  

The th ree  tests revea led   tha t   the  specimen i n   t h e  -3OO test  on so i l   sus t a ined  
massive s t ruc tu ra l  damage in   the   engine  compartment and f i r e  wall.  Severe damage, 
bu t  of lesser magnitude,  occurred i n   t h e  -3OO tes t  on concrete,   and  the  least   struc- 
t u r a l  damage w a s  experienced i n   t h e   l o o  tes t  on concrete. 

An average  longitudinal  cabin-floor  acceleration of -26g occurred i n   t h e  
-300 tes t  on s o i l .  An average  normal  cabin-floor  acceleration of -29g occurred i n  
t h e  -3OO tes t  on  concrete.  Accelerations i n   t h e  loo t e s t  on concrete were the  lowest 
fo r   t he   t h ree  tests. In   the -3OO test  on soil, the  longi tudinal   accelerat ion on t h e  
p i l o t ' s   p e l v i s  w a s  -6Og; whereas f o r   t h e  -3OO test  on concrete,   the  acceleration w a s  
-23g. The t ens ions   i n   t he   p i lo t ' s   l ap   be l t   f o r   t he  two -3OO tests was 3700 N and 
200 N,  respectively.  The normal a c c e l e r a t i o n   i n   t h e   p i l o t ' s   s e a t  pan was  -8g and 
-37g, respectively.  The loo tes t  on concrete  produced a longi tudinal   pelvis   acceler-  
a t ion  of -6g, negligible  lap-belt  tension,  and a normal seat-pan  acceleration 
of -14g. 

INTRODUCTION 

With the  rapid growth  of private  and commercial a i r  t r a f f i c   s i n c e  World War 11, 
increasing  emphasis  has  been  focused on the  causes of passenger  injuries  and  death  in 
severe,   but  potentially  survivable,   crashes.  The National  Advisory Committee f o r  
Aeronautics (NACA) conducted a series of fu l l - sca le   a i rp lane   c rash  tests with  instru- 
mented dummies i n   t h e  1950's.  (See  refs. 1 and 2.)  These tests were performed by 
acce lera t ing   the   a i rp lane   a long  a horizontal   guide rail  and  crashing it in to   an  
earthen mound. Later NACA s tud ies  on the  dynamic response of s e a t   s t r u c t u r e s   t o  
impact loads  ( ref .  3) r e s u l t e d   i n  a Civil  Aeronautics  Administration (CAA) update i n  
s ta t ic  seat-strength  requirements. The airplanes  previously  tes ted by NACA, however, 
were not   s t ruc tura l ly   representa t ive  of current  general-aviation  airplanes.  

In 1973, a general-aviation  crash-test  program w a s  i n i t i a t e d   j o i n t l y  by t h e  
National  Aeronautics  and  Space  Administration (NASA) and  the  Federal  Aviation 
Administration (FAA). (See  ref .  4.) As part  of t h i s  program, the  NASA Iangley 
Research  Center  has  conducted a series of  crash tests to   obtain  information on 
crashes of general-aviation  airplanes  under  controlled  free-fl ight  conditions.  (See 
re fs .  5 t o  10. ) These s tudies   a re   d i rec ted   t award   those   c rashes   in  which the  air- 
p lane   s t ruc ture   re ta ins   suf f ic ien t   cab in  volume and  integri ty   for   occupant   surviv-  
a b i l i t y .  The object ives  are t o  determine  the dynamic response of the   a i rp lane   s t ruc-  
tu res ,  seats, and  occupants  during a simulated  crash; t o  determine  the  effect   of 
f l i g h t  parameters a t  impact (i.e., f l i g h t  speed,  flight-path  angle,  pitch  angle, r o l l  
angle,  and  ground  condition) on t h e  magnitude  and pa t t e rn  of s t ruc tu ra l  damage; and 
t o  determine  the  loads imposed upon the  occupants. This information is  e s s e n t i a l   f o r  



predicting  structural  collapse  and  for  designing  safer  seats,  safer  occupant- 
restraint   systems, and safer   cabin  s t ructures .  

TEST FACILITY AND PROCEDURES 

Fac i l i ty  

The c r a s h   t e s t s  were  performed a t   t h e  Langley  Impact Dynamics Research F a c i l i t y  
shown i n  f igure 1. The gantry i s  composed of truss  elements  arranged  with  three  sets 
of inc l ined   legs   to   g ive   ver t ica l  and la te ra l   suppor t  and  another  set of incl ined 
legs  to  provide  longitudinal  support .  The gantry is  73 m high and 122 m long. The 
supporting  legs  are  spread 8 1  m a p a r t   a t   t h e  ground  and 20 m a p a r t   a t   t h e  66-m level .  
A n  enclosed  elevator and  a stairway  provide  access  to  the  overhead work platforms, 
and  catwalks  permit  safe  traverse of the  upper leve ls  of the  gantry.  A movable 
bridge  spans  the  gantry a t   t h e  66-m l eve l  and t raverses   the  length of the  gantry. 
Shawn i n  f igure 2 is  a sketch of a fu l l - sca le   a i rp lane  specimen  suspended  from the 
gantry i n  the  posit ion  ready  to be swung onto  the  impact  surface. The reinforced- 
concrete  impact  surface  provides a cons i s t en t   t e s t   su r f ace   fo r   r epea tab i l i t y  between 
t e s t s .  A soil  test-bed  approximately 12.1 m wide, 24.4 m long, and 1.2 m deep was 
placed on the  concrete  impact  surface  for one t e s t .  The test-bed  simulated a  plowed 
f i e l d ;   t h a t  is, it was suf f ic ien t ly   f i rm  to   suppor t  a l igh t   t rac tor   wi th  pneumatic 
t i r e s  and s o f t  enough fo r   t he   a i rp l ane  t o  d ig   in to   the   so i l   dur ing   the   c rash .   (See  
r e f .  11.) Detailed  information  about  the  facility i s  reported i n  reference 12. 

Crash-Test Method 

The t e s t  method used to   crash  the  a i rplane specimens is shown schematically i n  
f igure  3. The airplane specimen,  suspended by  two swing cables   a t tached  to   the  top 
of the  gantry, is drawn back and  above the impact surface by a  pull-back  cable t o  a 
height of about 4 9  m. The t e s t  sequence  begins when the  a i rplane specimen is 
released from the  pull-back  cable. The airplane specimen  swings pendulum s ty le   on to  
the  impact  surface. The swing cables  are  pyrotechnically  separated from the   a i rp lane  
specimen when the  a i rplane is about 1 m above the impact su r f ace   t o   f r ee  it from 
restraint   dur ing  the  crash impact. An umbilical  cable  remains  attached  during  the 
impact for   data   acquis i t ion and is  pyrotechnically  separated  about 1/2 s e c   a f t e r  
ground contact. The umbilical  cable l i n k s  the onboard  instrumentation t o  a  data- 
acquis i t ion system  located i n  a building  adjacent  to  the  gantry.  
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Airplane  Suspension  System 

The airplane  suspension  system  used t o   c o n t r o l   t h e  swing  and impact a t t i tude   o f  
the   a i rp lane  specimen i s  shown i n   f i g u r e  4. The swing  and  pull-back  cables  connect 
t o   t h e  swing  and  pull-back  harnesses. The swing  harness  consists of two swing-cable 
extensions which a t t ach  t o  t h e  wing  hard  points to   suppor t   the   a i rp lane  specimen  and 
t o  control   the   rol l   angle .  The pull-back  harness  consists  of a pair of cables 
a t t a c h e d   t o   t h e  wing hard  points  and a bar  which spreads   the   cab les   to   c lear   the  
airplane  fuselage and empennage. The pull-back  cable  attached t o   t h i s   h a r n e s s  is 
used t o   p u l l   t h e   a i r p l a n e  t o  the  height   necessary  to   produce  the  desired  veloci ty  a t  
impact. There are t w o  sets of pitch  cables  that   connect  to  the  swing-cable  r ings  and 
t o  fuselage  hard  points  forward  and  rearward  of  the airplane center  of gravi ty  t o  
control   the   angle  of a t tack.  

Test Parameters 

The impact a t t i t u d e  is  defined by the  tes t  parameters which include  the  f l ight-  
path  angle y, angle  of  attack a, pitch  angle  8, roll angle @, and yaw angle (1, 
as shown i n   f i g u r e  5. The planned  and  actual t es t  parameters   for   the  three tests 
reported  here,   along  with  photographs  i l lustrating  the  impact  at t i tude  €or  each  air-  
plane tes t  specimen, are p resen ted   i n   f i gu re  6. -11 and yaw angles  had a planned 
value of zero;  thus,   for  brevity,   the tes t  of each  airplane i s  here inaf te r   ident i f ied  
by word descr ip t ions   re fe r r ing  t o  the   p i t ch   ang le  ( i . e . ,  IOo tes t  on  concrete, 
-3OO tes t  on concrete,  and -3OO tes t  on soi l )  f o r  impact  positions shown i n   f i g u r e s  
6 ( a )   t o   ( c )  , respectively.  The nominal f l ight-path  veloci ty  a t  impact was 25  m/sec 
f o r   a l l  tests, which i s  approximately  the s t a l l  speed for   an   a i rp lane  of t h i s   t ype .  

Airplane  Test Specimen 

The three   a i rp lane  specimens  used f o r   t h e   t e s t s  were iden t i ca l  low-wing, s ingle-  
engine  general-aviation  airplanes  having a nominal mass  of 1043 kg with a capacity 
for  four  occupants.   (See  f ig.  7.) The airplane  specimens were complete  except  for 
the  upholstery,  empennage, and  avionics. The mass and  center of gravi ty  of t h e  
empennage w e r e  simulated by t w o  concentrated masses representing  the  f in-rudder  and 
stabilizer-elevator  combinations. The fue l   t anks  were f i l l ed   w i th   wa te r   t o   s imu la t e  
the   fue l  mass. Spoilers w e r e  a t t ached   t o   t he  wings t o  minimize the  aerodynamic l i f t .  
The ex ter ior   and   in te r ior  of t he   a i rp l ane  specimens were p a i n t e d   t o  enhance the  pho- 
tographic  contrast ,   and  black  l ines were pa in t ed   ove r   r i ve t   l i nes   t o   de l inea te   t he  
underlying  structure. 

The a i rp lanes   car r ied   the  same basic  equipment  necessary f o r   t h e  tests. Anthro- 
pomorphic dummies, each  with a mass of 75 kg, occupied  the  pilot 's ,   copilot 's ,   and 
first-passenger 's  seats. The -3OO tes t  on concrete  did  not  include a passenger. The 
seats w e r e  s tandard  for   an  a i rplane of th i s   type   and  were constructed  with  r igid 
tubular  legs,  except i n   t h e  100 and -300 tests on conc re t e   i n  which the   cop i lo t ' s  
seat w a s  constructed  with S-shaped tubular  legs.  The r e s t r a i n t  systems were standard 
for  t h e   p i l o t  and copilot; they  consis ted  of   lap  bel ts   fas tened t o  the   a i rp l ane   f l oo r  
and  single  shoulder  harnesses  attached  between  the top of the   fuselage  and  the lap 
belt. A similar restraint   arrangement w a s  used   for   the   passenger   in   the  -300 t es t  on 
soil.  In   the  l o o  test on concrete, no shoulder  harness w a s  used on t h e   f i r s t  pas- 
senger,  only a lap be l t .  
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INSTRUMENTATION AND DATA PREPARATION 

The locations  of  the  accelerometers  onboard  the  airplanes are shown in   f i g -  
ure  8. The accelerometers were or iented  a long  the normal ( z ) ,  longitudinal (X), and 
transverse ( Y )  axes shown i n   f i g u r e  5. Each locat ion is designated by i ts  gr id  
coordinates as fo l lows :   t he   f i r s t  number indicates  the  longitudinal  coordinates;   the 
f i r s t  le t ter  indicates   the normal coordinate   ( f loor   to   roof) ;   the   second number indi-  
cates  the  transverse  coordinate;  and the  second letter indicates  the  accelerometer 
orientation  with  respect t o  the  airplane  body-axis  system. The normal  and  longitu- 
d ina l   o r ien ta t ions  are designated  as N and L, respectively.  For  example, the  
normal-direction accelerometer location on the   f loor   neares t   the   copi lo t  on the   r i gh t  
s ide  of the  fuselage is designated 9D10N. The accelerometer  locations  and  their ori- 
en ta t ion   i n   t he  dummies a re   g iven   in   the   t ab le   in   f igure  8. The or ientat ions of t he  
accelerometers  are  given  in  the  body-axis  system of the  dummies, and the  locat ions 
are given in  the  grid  coordinate  system of the  a i rplane.  

Data s igna ls  were transmitted from t h e  specimen  through  an  umbilical  cable t o  a 
junction box  on top of the  gantry,   then  through  hardwire  to  the  control room where 
they were recorded  on  frequency-modulation (FM) tape  recorders.  (See f ig .  2. ) A 
time code w a s  recorded  simultaneously  on  the  magnetic tape and on t h e   f i l m   t o  syn- 
chronize  the  data   s ignals  on t h e  FM tape recorders  with  the external motion-picture- 
camera data.  There w a s  a l s o  a time-pulse  generator  onboard  the  airplane  €or  the 
onboard  cameras. 

The r a w  data  from t h e  FM tape  recorders were d ig i t ized   and   f i l t e red   wi th  a 20-Hz 
and 180-Hz d i g i t a l   f i l t e r   t o  remove the  higher-frequency  local  structural  vibrations. 
Calibration  information was used t o  conver t   the   resu l t s   to   engineer ing   un i t s  from 
which acce lera t ion   h i s tor ies  w e r e  plotted.  

RESULTS AND DISCUSSION 

l o o  Test on Concrete 

Crash  sequence.- The photographs i n   f i g u r e  9 i l l u s t r a t e   t h e   c r a s h  sequence  of a 
simulated 100 t e s t  on concrete  (hard  landing)  from  prior  to touchdown through i n i t i a l  
slide-out. The a i rp lane  specimen  contacted  the  concrete  impact  surface on i t s  main 
landing  gear a t  a fl ight-path  velocity of 24.6 m/sec along a fl ight-path  angle of 
-150, r e s u l t i n g   i n  a s ink  veloci ty  of 6.4 m/sec. The nose  gear  then  contacted  the 
ground. The a i rp l ane   s e t t l ed  on the  landing  gears which caused them t o   s t r o k e  com- 
p le te ly   and   to   f rac ture   the   l e f t   gear   ( f rame 5) and  then it continued t o   s l i d e   o u t  a t  
approximately  the same a t t i t u d e  as a t  impact.  Inside  the  cabin, a s l i g h t  movement of 
t h e  dummies  was seen. 

Assessment  of damage.- Postcrash  photographs of the   ex te rna l  damage sustained by 
the  a i rplane tes t  specimen are   p resented   in   f igure  IO. The l ivable   cabin volume (a  
volume su f f i c i en t   i n   s i ze   t o   ma in ta in   space  between the  occupants  and  the  structure) 
w a s  maintained  during  the  crash  impact.  In  figure  10(a),  the  airplane is  shown rest- 
ing  on i t s  l e f t  wing, right  landing  gear,  and  nose wheel. All three  tires experi- 
enced a blowout. The nose-gear  fork  bent  and  twisted  as shown in   f i gu res   10 (a )  
and ( c )  . The t w i s t e d   l e f t  wing, with no dihedral,   the  broken  l inkage  for  the  inboard 
flap,  the  sheared  rear-spar  attachment  bolt,  and  the  sheared  fore-wing  attachment t o  
the  fuselage are shown in   f i gu res   10 (a ) ,   ( b ) ,  ( c ) ,  and ( a ) ,  respectively.  The fuse- 
lage is  shown t o  be i n  good overall   condition  except  for a slight  deformation a t  t he  
interface  with  the  inboard  left-wing  flap. Figure 10( e )  shows the  damaged l e f t  land- 
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ing  gear   with  the  f ractured shock  absorber.  Figure 10( f )  shows t h e  crew compartment, 
t he   p i lo t   and   cop i lo t  dummies, and t h e i r   r e s t r a i n t s .  The overa l l  lack of s t ruc tu ra l  
damage  by t h i s  t e s t  i s  also shown in   f i gu re   lO( f ) .  

-3OO Test on Concrete 

Crash  sequence.- The photographs i n   f i g u r e  11 i l l u s t r a t e   t h e   c r a s h  sequence  of a 
-3OO p i t ch  (nose-down) impact t e s t  s t a r t i n g  prior t o  touchdown through a part  of t h e  
slide-out. The a i rp lane  specimen  contacted  the  concrete impact surface on i t s  nose 
wheel a t  a flight-path  velocity  of 24.6 m/sec (sink  velocity  of 11.9 m/sec 
(frame 4) ) . The nose  gear  then  collapsed  (frame 5) and   f ina l ly  embedded i n   t h e   f l o o r  
i n   t h e  baggage  compartment (cabin  cargo area). Afterwards,  the  airplane  nose,  fol- 
lowed by the  main landing  gears,   contacted  the ground. As the  airplane  continued i t s  
t ravel ,   the   fuselage  rotated downward, the  airplane  nose  crushed,  and  the main land- 
ing  gears  collapsed which forced  the wings t o  t w i s t  ( f  Tame 6) . A t  the   onset  of the  
decelerating  forces  (frame 5), t h e  p i l o t  and  copi lot   s tar ted  to   pi tch  forward  and 
t h e i r  upper  torso  lurched  toward  the  instrument  panel  (frames 6 and 7)  . I b s t  of t he  
crushing  and damage to   t he   a i rp l ane   t ook   p l ace   a t   t he  t i m e  recorded  in  frame 6. 
Frames 7, 8, and 9 show t h e   a i r p l a n e   s e t t l i n g  on the  impact  surface  and  sl iding  out.  

Assessment  of damage.- Postcrash  photographs  of  the damage sustained by the  
a i rp lane  specimen a r e  shown i n   f i g u r e  12. Figure  12(a) shows the   a i rp l ane   i n  its 
f ina l   pos i t i on   r e s t ing  on the  fuselage  and wings. The nose  and main landing  gears 
fractured  and  collapsed  and  the t ires blew out  during  the  impact. Both windshields 
broke  and the   cen ter   pos t  between the  windshields  bent. Some of the   f ront  damage can 
be  seen  under  the  engine  cowling. The impact  force  caused  part of the   lower   f i re  
w a l l  to  protrude  about 20 cm into  the  cabin.  Both wings los t   the i r   d ihedra l ,   and   the  
l e f t  wing i s  shown propped by the  collapsed  landing  gear. The balloon  seen  in  f ig- 
ure  12(a) w a s  p a r t  of  an Emergency Locator  Transducer (ELT) experiment  for  locating a 
crashed  airplane by v i s i b l e  means. 

Figure  12(b) shows t h e   p i l o t  and  copilot  dummies r e s t r a i n e d   t o   t h e i r  seats a f t e r  
the  a i rplane came t o  a stop. A l s o  shown i s  buckling of the  airplane  nose and side 
panel  over  the wing.  The space  between  the seats and  instrument  panel, as w e l l  as 
the  l ivable   cabin volume, w a s  maintained.  Figure  12(c) shows the  lef t   inboard-f lap 
control  broken,  the  rear-spar  attachment  pin  sheared  off,  and some buckl ing  in   the 
fuselage  skin.  Figure  12(d) shows a collapsed  landing  gear  and  buckling  of  the  skin 
under  and a f t  of the  cargo door.  In f igure  12( e ) ,   t h e  nose  wheel i s  seen embedded i n  
the   f loor  of t he  rear cabin. A l s o  shown is the  rear-cabin-floor  upheaval a f t  of t h e  
passenger compartment, the  transducer  junction box, and  the  pyrotechnic programmer 
box. Figure  12(f)  shows  a s l igh t   deformat ion   in   the   a f t  member of the  doorframe  and 
a f r a c t u r e   i n   t h e  lower front  corner.  Other damage t o   t h e   a i r p l a n e ,   n o t  shown i n  
these  photographs, was buckled  skin from the  airplane  nose t o  t h e   t h i r d   l e f t  window, 
a buckled  wing a t  the  a t tachment   point   to   the  fuselage  forward of t he  main spar,  a 
cracked  first-passenger window, a col lapsed  lef t   landing  gear ,  and a f a i l ed   cop i lo t  
seat rail a t  t h e  rear-legs attachment  point. 

-300 Test on Soil 

Crash  sequence.- The crash  sequence of a -3OO p i t ch  (nose-down) impact test on a 
s o i l   s u r f a c e  is i l l u s t r a t e d   i n   f i g u r e  13. The sequence starts p r i o r   t o  touchdown and 
ends when the   s ca t t e r ed  soil starts t o  se t t le  a f t e r   t h e   a b r u p t  impact. "he airplane 
specimen contac ted   the   so i l  impact surface on its nose  wheel a t  a flight-path  veloc- 
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i t y  of 24.6 m/sec (a sink  velocity  of 12.9 m/sec) . me nose  gear  then  collapsed 
(frame 2)  and l a t e r  lodged i n   t h e  lower  half of t h e   f i r e  w a l l '  during  crushing  of  the 
ai rplane nose. The nose  of  the  airplane  started t o  crush  (frame 3), and  the main 
landing  gears  contacted  the ground. 

A s  the   a i rplane  decelerated,   the  dummies s t a r t e d  t o  pitch  forward  (frame 3) and 
lurched  forward  out  of  the view i n  frame 4.  The p i lo t ' s  shoulder  harness  can  be  seen 
t a u t  and fully  extended  holding  the  displaced dummy (frame 4) . Frame 4 also shows 
that   the   nose of the   a i rp lane   has   c rushed   to   the   f i re  w a l l ,  the  engine  cowling  has 
come off ,   the   landing  gears  have  collapsed,  the wings  have  contacted  the  ground,  and 
buckling  of  the  structure  has  occurred on the  top  and  side  of  the  fuselage.  

Frame 5 shows fu r the r  compression  of the  fuselage  with heavy damage extending  up 
t o   t h e   p i l o t ' s  window.  The a f t  part  of t h e   l e f t  wing h a s   s t a r t e d   t o  separate from 
the  fuselage. Bending  of t h e  roof  has  occurred a f t  of t h e   p i l o t ' s  window, and  the 
engine  cowling  has  compietely  separated from the  a i rplane.  The p i lo t   and   cop i lo t  
dummies have  bounced  back to   the   sea ted   pos i t ion ,   and   f i re  w a l l  has  protruded  into 
the crew area,   thus  reducing  the  space between t h e   f i r e   w a l l  and  the crew sea ts .  The 
first-passenger dummy i s  bent  forward  over i t s  knees  and, i n  frame 6, h a s   s t a r t e d   t o  
rebound. The l e f t  wing continues t o   s e p a r a t e  from the  fuselage a t  t he  main spar  
while  pivoting  forward. In frame 7, t he  wing has  separated from the  main spar  and 
more recovery in   the   f i r s t -passenger  dummy i s  shown. Frame 8 shows t h e   p i l o t  dummy 
flexing  forward,  the f irst-passenger dummy slanted  forward a t  45O and moving rear- 
ward, and t h e   l e f t  wing completely  detached  from the  fuselage.   In  frame  9,   the  pilot  
dummy i s  flexing  rearward  and  the f irst-passenger dummy i s  bouncing upward and 
rearward. 

In  frames 10  and 11, t he  first-passenger-dummy's  head  has hi t   the   roof   while  
moving rearward i n  an  arc.  In  frames 12 and  13, t h e  first-passenger-dummy's  head i s  
no longer  in  contact  with  the  roof  and  the  upper  torso  continues  to rotate rearward. 
The p i l o t  dummy is  seen  flexing  forward.  In  frames 14,  15,  and  16, t h e   p i l o t   a n d  
copi lo t  dummies a r e  shown pitched  forward  into  the  instrument  panel.  The f i r s t -  
passenger dummy i s  shown aga ins t   the   sea t  back. 

Assessment  of damage.- Postcrash  photographs of t h e  damage sustained by the  
airplane specimen a r e  sh&n i n   f i g u r e  14. The l ivable   cabin volume, although 
reduced, was maintained  during  the  crash  impact.  Figure  14(a) shows t h e   a i r p l a n e   i n  
i ts  f ina l   pos i t i on   r e s t ing  on the  fuselage  and  r ight wing. The l e f t  wing i s  shown 
detached  and i n   f r o n t  of the  a i rplane.  The engine  top  cowling  has come off  and is  
shown on t h e   r i g h t   s i d e  ahead  of t he  wing. Figure  14(b) shows buckles  on  the wing 
leading edge  and  on the  side  panel  ahead of t he  door,  and a l s o  shows  damage t o   t h e  
nose,  windshields,  and  center  post of the  a i rplane.  The degree of center-post bend 
i s  an  indication  of  the  protrusion of t he   f i r e   wa l l   i n to   t he   cab in .  The protrusion 
of the  lower  half   of   the   f i re  w a l l  in to   the   cab in  measured  up t o  51 cm and w a s  more 
severe  than  the  top  half .   Figure  14(c) shows  a t e a r  on t h e  wing over  the  landing 
gear,  separation of t he   r i gh t  wing  from t h e   f u s e l a g e   a f t  of t h e  main spar ,  a f r ac tu re  
i n   t h e  lower rea r  of the  doorframe,  and the  copilot-dummy's  knees  bent  up  due t o   t h e  
reduced  space  from  the  seat to   the   f i re   wal l .   F igure   14(d)  shows a bent  propeller,  a 
bent  and  fractured  engine mount, a t o rn  lower engine  cowling,  and a deformed f i r e  
wall. Figure  14(e) shows  a f ractured main-spar  attachment t o  the  wing and  the  broken 
hydrau l i c   l i nes   i n   t he   l e f t  wing. Figure  14(f)  shuws the  f loor   and  foot-control  
deformations i n   t h e   c o p i l o t ' s   s i d e  of the  fuselage.  

Other damage not Shawn i n   f i g u r e  14 were  heavy buckling i n   t h e   p i l o t ' s   s i d e  of 
the   fuse lage   and   shear ing   of   r ive ts   in   the   l e f t   par t  of t h e  roof t o   t h e   l e f t  of t he  
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p i l o t ' s  window. It was a l so   no t i ced   t ha t   t he   p i lo t ' s  window broke o f f ,   t h e   p i l o t ' s  
s ea t  pan tore  through, and p a r t  of the   p i lo t ' s   cont ro l  wheel f rac tured   of f .  

Normal Accelerations 

Cabin floor.-  Normal accelerations on the  cabin  f loor i n  the crew  and passenger 
~ compartments for   the   th ree   t es t s   a re   p resented  i n  f igure 15.  The crew  compartment is 

located  forward of the main spar,  and the  passenger compartment is located immedi- 
a t e l y   a f t  of the  main spar.  Floor  accelerometers were placed  adjacent  to  each  leg of 
t h e   p i l o t ' s   s e a t ,   t o   t h e   r i g h t   r e a r   l e g  of the   copi lo t ' s   sea t ,  and t o   t h e   f r o n t  
inboard  leg of the  f i rs t -passenger 's   seat .  To obtain  an  overall  acceleration  value 
f o r  t he  cabin  floor i n  each t e s t ,   t h r e e  peak accelerat ions on the  inboard  floor beam 
located under the   s ea t s  of t h e   p i l o t  and f i r s t  passenger were  averaged and compared. 
The  beam  was chosen f o r  i t s  location  (toward  the  center of the  fuselage)  and f o r  i ts  
r igidi ty   (accelerat ions  less   suscept ible   to   local   deformations) .  I n  the  discussion 
that   fol lows,  it should be noted  that   only  the  f i rs t   s ignif icant   accelerat ion  peaks 
are  being compared. 

The normal accelerat ions i n  the crew compartment for   the  l o o  t e s t  on concrete 
were evenly  distributed from wall   to   wal l  and  peaked a t  - 1 1 9 .  I n  the  passenger com- 
partment, a -159 peak acceleration was obtained. The average  peak  acceleration on 
the   f loor  beam  was - 1 39.  

Normal peak accelerat ions i n  the  cabin  for  the -3OO t e s t  on concrete  ranged i n  
values from -259  t o  -379 .  I n  the crew  compartment,  peak accelerations  varied between 
-319  and -379; whereas i n  the  passenger compartment,  they varied between -259 and 
-289 .  The average  peak  acceleration on the   f loor  beam  was -299 .  

Normal peak accelerat ions i n  the crew compartment fo r   t he  -3OO t e s t  on s o i l  
ranged between  -69  and -199, w i t h  the  higher peak accelerations  obtained toward the  
a i s l e .  Lower values ( -69  t o  -139)  were obtained  toward  the  cabin  wall. I n  the  pas- 
senger compartment  a  peak acceleration of -129  was obtained  near  the  aisle.  The 
average  peak  acceleration on the   f loor  beam  was -179.  

Cabin roof ,   fuse lage   t a i l ,  and l e f t  wing.- Normal peak accelerat ions on t h e  
cabin  roof,   fuselage  tail ,  and l e f t  wing are  presented i n  f igure 16.  Peak accelera- 
t i ons  on the  roof i n  the crew compartment averaged -129 fo r   t he  l o o  t e s t  on concrete, 
-319  for   the - 3 O O  t e s t  on concrete, and -109 for   the -3OO t e s t  on s o i l .  On t h e   t a i l ,  
t h e  peak accelerations,   apparently because of the   s t ruc tura l   f lex ib i l i ty ,   var ied  from 
2 0 9  t o  -129  for   the l o o  t e s t  on concrete, 199 t o  -279  for   the -3OO t e s t  on concrete, 
and l o g  t o  -119 for   the  -3OO t e s t  on s o i l .  On the  wing,  a -59 peak accelerat ion 
occurred a t  impact  €or  the - 3 O O  t e s t  on s o i l ,  with  a maximum acceleration of 39g  a s  
the  wings were torn from the  fuselage. Wing acce lera t ions   for   the   o ther  two t e s t s  
were not  recorded. 

Engine  compartment, main spar, and luggage  compartment. Normal accelerat ions i n  
the  engine compartment, main spar,  and luggage compartment are  presented i n  f ig -  
ure  17.  Normal accelerometers mounted on the  engine  recorded -129 i n  the  l o o  t e s t  on 
concrete, -529 i n  the -3OO t e s t  on concrete, and -189 for   the  - 3 O O  t e s t  on s o i l .  On 
the   f i re   wal l ,   the   average  peak accelerations were -129,  -2Og, and -259,  respec- 
t i ve ly ;  on the main spar,  they were -129,   -259,  and -99, respectively; and i n  t he  
luggage  compartment,  they  were - 1 1 9 ,  -139,  and -79, respectively.  In  general,  the 
normal  peak acce lera t ions   a t   these   loca t ions  were highest   for   the -3OO t e s t  on con- 
crete,   with  the  exception of  an accelerometer on the  middle of t h e   f i r e   w a l l   t h a t  
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recorded  a  higher  acceleration  for  the -3OO t e s t  on s o i l .  However, t h i s  was a local-  
ized  accelerat ion  value  a t   the   deformation  s i te  and not  an  average  acceleration. I n  
the  engine compartment  and a t   t h e  main spar,   accelerations were lowest   for   the 100 
t e s t  on concrete. I n  t h e  luggage  compartment, accelerat ions were lowest   for   the -30° 
t e s t  on so i l .  

P i l o t ' s  body and s e a t  ~ - _ ~ _  pan.- Normal accelerat ions i n  t h e   p i l o t ' s  body and s e a t  
pan are  presented i n  f igure  18. In  the 1 Oo t e s t  on concrete,  peak accelerat ions of 
-2Og and -22g were recorded i n  t h e   p i l o t ' s  head  and pelvis ,   respect ively.  A peak 
accelerat ion of -14g was recorded a t   t h e   s e a t  pan. N o  accelerat ion was recorded on 
t h e   p i l o t ' s   c h e s t   f o r  t h i s  t e s t .  In t he  -300 t e s t  on concrete, a  peak accelerat ion 
of  -37g was recorded a t   t h e   p i l o t ' s   s e a t  pan. No accelerat ions were recorded a t   t h e  
head, chest ,   or   pelvis .  In the  - 3 O O  t e s t  on s o i l ,  peak accelerat ions of 155g, -168g, 
-46g,  and  -8g  were recorded i n  t h e   p i l o t ' s  head,  chest ,   pelvis,  and seat  pan,  respec- 
t ive ly .  From a  high-speed  motion-picture  analysis, it was observed  that  during  the 
impact of the   a i rp lane  on t h e   s o i l ,   t h e  dummy's head  impacted the  instrument  panel on 
the   r i gh t   s ide  of the   cont ro l   s t ick .  The high  posit ive  acceleration  value ( 1  55g) 
recorded i n  t he  head  and the  negative  value  (-168g) i n  the   ches t   a re  a  consequence  of 
t h i s  impact. The normal accelerat ion of -8g i n  t h e   s e a t  pan  occurred  primarily 
because  the  soil  impact was e s sen t i a l ly  a high  longitudinal  loading i n  which t h e  
dummies'  moving forward  unloaded  the  seat-pan  area. 

Copi lot ' s   pelvis  and s e a t  pan.- ~ Normal accelerat ions i n  the   copi lo t ' s   pe lv is   and  
s e a t  pan are  presented i n  f igure  19. In the  100 t e s t  on concrete,  the peak accelera- 
tion  recorded i n  the  dummy's pe lv i s  was -4g  and i n  t h e   s e a t  pan was -149. I n  the  
-3OO t e s t  on concrete,  the peak acceleration  recorded i n  t h e  pe lv is  was  -29g and i n  
t h e   s e a t  pan was  -2Og. Acceleration  data a t   t hese   l oca t ions  were l o s t   f o r   t h e  
- 3 O O  t e s t  on s o i l .  

Longitudinal  Accelerations 

Cabin f loor . -   mngitudinal   accelerat ions on the   cab in   f loor  i n  the  crew  and 
passenger compartments i n  t he   v i c in i ty  of t he   p i lo t ,   cop i lo t ,  and first-passenger 
locat ions  for   the  three  tes ts   are   presented i n  f igure  20. Peak accelerations  taken 
a t   th ree   loca t ions   a long   the   inboard   f loor  beam under t h e   p i l o t  and f i r s t  passenger 
were averaged f o r  each t e s t   t o   o b t a i n  a representative  cabin-floor peak accelerat ion.  
Average f loo r  peak accelerat ion were -2g f o r   t h e  1 Oo t e s t  on concrete, -1 lg   for   the  
-3OO t e s t  on concrete, and  -26g f o r   t h e  - 3 O O  t e s t  on s o i l .  Local acce lera t ions   for  
each t e s t  were distributed  rather  evenly  both i n  t he  crew  compartment  and across   the 
f loo r  beam. bngi tudina l   acce le ra t ions   a re  a function of the  veloci ty  change during 
i n i t i a l  impact. The tests  with  longer  sl ide-out  distances  produced lower  longitu- 
dinal  accelerations  because a  lower longi tudinal   veloci ty  change occurred a t   i n i t i a l  
impact. 

Cabin roof ,   fuse lage   t a i l ,  and l e f t  wing.- Longitudinal  accelerations on the  
cabin-,:and l e f t  wing -a represented  i n  f igure  2 1. The highest  
accelerat ions were recorded  for  the - 3 O O  t e s t  on s o i l ,  and the  lowest were f o r   t h e  
100 t e s t  on concrete. On the  cabin  roof,  peak accelerat ions were small and varied 
from 5g t o  -5g f o r   t h e   l o o   t e s t  on concrete, 8g t o  -17g f o r   t h e  -300 t e s t  on con- 
c re t e ,  and 9g t o  -22g fo r   t he  - 3 O O  t e s t  on so i l .   Acce lera t ions   a t   the  Emergency 
Locator  Transducer (ELT) locat ion were -3g, -8g, and -14g f o r   t h e  100 t e s t  on con- 
c re te ,   the  -300 t e s t  on concrete,  and  the -300 t e s t  on so i l ,   respec t ive ly ;  whereas on 
t h e   t a i l   a t   t h e   f u s e l a g e   t o p ,   t h e  peak accelerations were  -5g,  -15g, and -25g, 
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respectively.  On t h e   l e f t  wing, the peak acceleration was -22g for   the  -3OO t e s t  on 
s o i l .  N o  accelerations were recorded on the  wing for   the   o ther   t es t s .  

Engine  compar@ent,~main  spar, and luggaqe compartment.- Longitudinal  accelera- 
t ions  i n  the  engine compartment, main spar, and  luggage  compartment are   presented  in  
f igure  22. Peak longitudinal  accelerations  recorded on the  engine were -5g for   the  
loo   t e s t  on concrete, -24g for   the  - 3 O O  t e s t  on concrete, and  -779 for   the  - 3 O O  t e s t  
on s o i l .  For the  IOo t e s t  on concrete, peak accelerations were -2g on the  lower l e f t  
portion of the   f i re   wal l  and  -3g on the middle portion. For the - 3 O O  t e s t  on con- 
c re t e ,   t he  peak accelerations were -14g and -38g, respectively.  Fire-wall  data were 
lo s t   fo r   t he  - 3 O O  t e s t  on s o i l .  I n  the main spar,   the  longitudinal peak accelera- 
t i ons  were -4g for   the  -IOo test on concrete, -13g fo r   t he  -3OO t e s t  on concrete, and 
-3Og for   the  - 3 O O  t e s t   o n . s o i 1 .  I n  the luggage  compartment, the peak accelerations 
were  -5g, -12g, and  -27g, respectively.  In  general ,   the.acceleration magnitudes a t  
these  locations were h ighes t   for   the   t es t  on s o i l  and  lowest for   the  l o o  t e s t  on 
concrete. 

P i l o t  dummy.- Longitudinal  accelerations i n  t h e   p i l o t ' s  head, chest, and pe lv is  
are  presented i n  f igure 23. I n  t h e   p i l o t ' s  head,  a  peak acceleration of -5g was 
obtained i n  the  100 t e s t  on concrete. In  the - 3 O O  t e s t  on concrete, a par t ia l   accel-  
eration  trace  with a value of -409 was obtained  before  the  data were lo s t .  An accel- 
e ra t ion  of -240g occurred i n  t he  - 3 O O  t e s t  on s o i l  because  high-speed  motion-pictures 
for  t h i s  t e s t  showed t h e   p i l o t ' s  head striking  the  instrument  panel.  A high- 
acceleration  spike of short   duration is  indicat ive of such  an  impact. I n  t h e   p i l o t ' s  
chest ,   the  longitudinal peak accelerations were -129 i n  the   loo   t es t  on concrete, 
-33g i n  the  - 3 O O  t e s t  on concrete, and -24g i n  the - 3 O O  t e s t  on s o i l .  In  t h e   p i l o t ' s  
pelvis ,   the   longi tudinal  peak accelerations were -69 i n  the   loo   t es t  on concrete, 
-23g i n  t he  - 3 O O  t e s t  on concrete, and -609 i n  the -3OO t e s t  on s o i l .  N o  
longitudinal  accelerations were measured i n  the  copi lot  dummy. 

Tension i n  Restraint-Harness System 

Tension for   the   l ap   be l t  and shoulder  harness i n  t h e   p i l o t  and copi lot  dummies 
a re  shown i n  f igure 24. Loads i n  t h e   p i l o t ' s   l a p   b e l t  were negl igible   for   the 
IOo t e s t  on concrete, 200 N for   the - 3 O O  t e s t  on concrete, and 3700 N for   the  
-3OO t e s t  on so i l .  I n  the  pilot 's   shoulder  harness,   the  loads were negl igible   for  
the  loo test on concrete, 3400 N for   the -3OO t e s t  on concrete, and 3800 N for   the  
-3OO t e s t  on s o i l .  I n  t he   cop i lo t ' s   l ap   be l t  and shoulder  harness,  the  loads were 
negl ig ib le   for   the   loo   t es t  on concrete;  but  they were 1400 N and 3000 N ,  respec- 
t i v e l y ,   f o r   t h e  -3OO t e s t  on concrete. For the  -3OO t e s t  on s o i l ,  no measurements 
were made  on the   copi lo t ' s   l ap   be l t  and shoulder  harness. Attempts to   co r re l a t e  
res t ra int   loads  with  accelerat ions of the dummies and sea t s  were not made because 
loads  are measured i n  directions  other  than  the  accelerations,  seat/occupant  inter- 
act ions may be d i f fe ren t   for   d i f fe ren t   sea ts  under t h e  same apparent  loadings, and 
dummies s t r iking  the  a i rplane  s t ructure   a l ter   drast ical ly   the  var ious  responses  of 
dummies and seats .  

CONCLUDING REMARKS 

Three identical   four-place,  low-wing single-engine  airplane specimens  were 
c rash- tes ted   a t   the  Langley  Impact Dynamics Research Fac i l i ty .  Two airplanes were 
crashed on a concrete  surface a t   l o o  and -3OO pitch  angles, and one airplane was 
crashed on s o i l   a t  a -3OO pitch  angle. The purpose of t h e   t e s t s  was t o  determine  the 
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s t ruc tu ra l  and  occupant  response  for low-wing single-engine  airplane specimens a t  
th ree   d i f fe ren t  impact  conditions. All airplane specimens were t e s t e d   a t   t h e  same 
nominal  impact velocity of 25 m/sec along  the  f l ight   path.  

I n  a l l   t h r e e   t e s t s ,   t h e   l i v a b l e  volume inside  the  cabin was su f f i c i en t ly  main- 
tained  to  provide  protection  for  the  occupants.  The worst  cabin  interior damage 
occurred i n  the  test on s o i l  where the  f i re   wal l   protruded up t o  51 cm in to   t he  
cabin.  Exterior damage to   the   a i rp lane  was a l so  most severe i n  t h e   t e s t  on s o i l  
where the  engine compartment  and f i re   wal l   sustained massive s t ruc tu ra l  damage, the  
l e f t  wing detached, and the  nose and landing  gears  collapsed.  Severe damage, but of 
l esser  magnitude,  occurred i n  the -30" t e s t  on concrete where the  f i re   wal l   protruded 
s l igh t ly   in to   the   cab in ,   the  nose  wheel embedded i n  t he  luggage-compartment f loor ,  
and the nose  and main landing  gears  collapsed. The l eas t   s t ruc tu ra l  damage occurred 
fo r   t he  10" t e s t  on concrete  because most  of the  impact  energy was diss ipated by the 
landing  gears and by friction  during  the  long  sl ide-out  distance.  A common  damage i n  
a l l   t h r e e   t e s t s  was a b o l t   f a i l u r e  i n  the  rear  wing-spar bracket. 

On the  cabin  floor,  average  accelerations i n  the normal direct ion were -13g fo r  
the  IOo t e s t  on concrete, -29g for   the -30" t e s t  on concrete, and -17g fo r   t he  
-30" t e s t  on s o i l .  I n  the  longitudinal  direction,  the  average  cabin-floor  accelera- 
t i ons  were -2g for   the  IOo t e s t  on concrete,  -1lg  for  the -30" t e s t  on concrete, and 
-26g for   the -30" t e s t  on s o i l .  Normal peak accelerat ions i n  t h e   p i l o t ' s  head were 
-2Og for   the 10" t e s t  on concrete and 155g €or  the - 3 O O  t e s t  on s o i l  (due t o   t h e  
dummy's s t r ik ing   the   a i rp lane   s t ruc ture) .  

Normal peak accelerations i n  t he   p i lo t ' s   s ea t  pan were -14g €or  the 10" t e s t  on 
concrete, -37g for   the 30" t e s t  on concrete, and -8g €or  the 30" t e s t  on s o i l .  The 
p i lo t ' s   l ap-be l t   t ens ion  was 200 N for   the  -30" t e s t  on concrete and 3700 N for   the  
-30" t e s t  on s o i l .  For t h e  IOo test on concrete,  the  lap-belt  tension was negligi- 
ble.  Longitudinal  accelerations i n  t he   p i lo t ' s   pe lv i s  were -6g for   the 10" t e s t  on 
concrete, -23g for   the -30" t e s t  on concrete, and -6Og for   the -30" t e s t  on s o i l .  

Langley  Research  Center 
National  Aeronautics and  Space  Administration 
Hampton, VA 23665 
A u g u s t  2 ,  1983 
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Figure 2.- Diagram of Langley  Impact Dynamics Research Fac i l i t y .  
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Figure 4.- Airplane  suspension  system. 
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Figure 5.- Coordinate system and crash attitude. 
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Test   parameter  
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-1 5 
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P i t c h   a n g l e ,  8, deg . . . . . .  1 0  9 
,,',': Ro l l   ang le ,  +, deg . . . . . .  0 4.3 

Yaw angle,  I), deg . . . . . . .  0 1.8 

F l i g h t - p a t h   v e l o c i t y ,  m/sec . . 24.6 25 

(a 1 100 test  on concrete. 
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F l i g h t - p a t h   a n g l e ,  y, deg . 
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P i t c h   a n g l e ,  8, deg . . . .  
Ro l l   ang le ,  +, deg . . . .  
Yaw angle,  I), deg . . . . . .  
F l i g h t - p a t h   v e l o c i t y ,  m/sec 

(b) - 3 O O  test on concrete. 

Test   parameter  

F1 i g h t - p a t h   a n g l e ,  y, deg . 
Angle o f  a t t a c k ,  a ,  deg.. . 
P i t c h   a n g l e ,  8, deg . . . .  
Ro l l   ang le ,  +, deg . . . .  
Yaw angle,  9,  deg . . . . .  
F1 i g h t - p a t h   v e l o c i t y ,  m/sec 

L-83-101 
(c) - 3 O O  test on soil. 
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. . -30 

. .  0 

. . -30 

. .  0 

. .  0 

. . 24.6 
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. .  0 

. . -30 

. .  0 

. .  0 

. . 24.6 

Ac tua l  

-29 

3 

-26 

-1 
-3 

24.6 

Ac tua l  

- 31 

3.8 
-27.3 

2.5 

-7.3 

25 

Figure 6.- Test  specimens  and  test parameters. 
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Figure 8.- Diagram of accelerometer  locations on airplane structure  and  in dummies. 
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Figure 9.- Crash-sequence photographs of l o o  test on concrete (hard landing) . 



(a)  Overall view from front. (b) Overall view from rear. 

1 Rear-spar attachment p o i n t  A, 

( c )  Overall view from 
lef t   s ide .  

(d l  Close-up view of rear-spar 
attachment. 

( e )  Close-up view of l e f t  
main gear. 

(f) Close-up  view of crew  compart- 
ment  from right  side. 
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L-78-315.1 

Figure 11.- Crash-sequence photographs of -3OO (nose-down) test on concrete. 



(a)   Overal l  view from front .  (b )  Close-up view of forward 
sect ion from r ight   s ide.  

( c )  Close-up  view of rear-spar 
attachment. 

(d )  Close-up view of r igh t  wing 
and cabin  section. 

(e) Close-up  view of rear-cabin 
area. 

( f )  Close-up  view of crew section. 

L-83- 103 
Figure 12.- Postcrash damage t o   t e s t  specimen i n  - 3 O O  (nose-down) t e s t  on concrete. 
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( a )  Overall view  from f r o n t .  (b)  Close-up  view of f ront   and  
r i g h t   s i d e .  

( C )  Close-up  view  of  forward  cabin 
and   r igh t  wing. 

( d )  Close-up  view of engine  compartment 
and f i r e  w a l l .  

(e)  Close-up  view  of  left-wing 
f a i l u r e .  

( f )  Close-up  view  of crew sec t ion .  
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Figure 15.- Normal  accelerations on cabin floor in crew and passenger compartments. 
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Figure 17.- Normal accelerations i n  engine compartment and f i r e   wa l l ,  main spar, 
and luggage  compartment. 
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Figure 18.- N o r m a l  accelerations  in pilot's  body and  seat pan. 
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Figure 19.- Normal accelerations i n  copi lo t ' s   pe lv is  and sea t  pan. 
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Figure 20.- Longitudinal  accelerations on cabin floor in crew  and 
passenger compartments. 
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Figure 21.- Longitudinal  accelerations on cabin  roof ,   fuselage  ta i l ,   lef t  wing, 
and a t  ELT location. 
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